A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer

Abstract Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including triple negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach to establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the concentration and durat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew T. McKenna, Jared A. Weis, Stephanie L. Barnes, Darren R. Tyson, Michael I. Miga, Vito Quaranta, Thomas E. Yankeelov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e8a68c155b6c4782a3384e08511f52ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e8a68c155b6c4782a3384e08511f52ab
record_format dspace
spelling oai:doaj.org-article:e8a68c155b6c4782a3384e08511f52ab2021-12-02T11:40:53ZA Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer10.1038/s41598-017-05902-z2045-2322https://doaj.org/article/e8a68c155b6c4782a3384e08511f52ab2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05902-zhttps://doaj.org/toc/2045-2322Abstract Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including triple negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach to establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the concentration and duration of doxorubicin therapy shape subsequent cell population dynamics. This work features a series of longitudinal fluorescence microscopy experiments that characterize (1) doxorubicin uptake dynamics in a panel of TNBC cell lines, and (2) cell population response to doxorubicin over 30 days. We propose a treatment response model, fully parameterized with experimental imaging data, to describe doxorubicin uptake and predict subsequent population dynamics. We found that a three compartment model can describe doxorubicin pharmacokinetics, and pharmacokinetic parameters vary significantly among the cell lines investigated. The proposed model effectively captures population dynamics and translates well to a predictive framework. In a representative cell line (SUM-149PT) treated for 12 hours with doxorubicin, the mean percent errors of the best-fit and predicted models were 14% (±10%) and 16% (±12%), which are notable considering these statistics represent errors over 30 days following treatment. More generally, this work provides both a template for studies quantitatively investigating treatment response and a scalable approach toward predictions of tumor response in vivo.Matthew T. McKennaJared A. WeisStephanie L. BarnesDarren R. TysonMichael I. MigaVito QuarantaThomas E. YankeelovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Matthew T. McKenna
Jared A. Weis
Stephanie L. Barnes
Darren R. Tyson
Michael I. Miga
Vito Quaranta
Thomas E. Yankeelov
A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
description Abstract Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including triple negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach to establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the concentration and duration of doxorubicin therapy shape subsequent cell population dynamics. This work features a series of longitudinal fluorescence microscopy experiments that characterize (1) doxorubicin uptake dynamics in a panel of TNBC cell lines, and (2) cell population response to doxorubicin over 30 days. We propose a treatment response model, fully parameterized with experimental imaging data, to describe doxorubicin uptake and predict subsequent population dynamics. We found that a three compartment model can describe doxorubicin pharmacokinetics, and pharmacokinetic parameters vary significantly among the cell lines investigated. The proposed model effectively captures population dynamics and translates well to a predictive framework. In a representative cell line (SUM-149PT) treated for 12 hours with doxorubicin, the mean percent errors of the best-fit and predicted models were 14% (±10%) and 16% (±12%), which are notable considering these statistics represent errors over 30 days following treatment. More generally, this work provides both a template for studies quantitatively investigating treatment response and a scalable approach toward predictions of tumor response in vivo.
format article
author Matthew T. McKenna
Jared A. Weis
Stephanie L. Barnes
Darren R. Tyson
Michael I. Miga
Vito Quaranta
Thomas E. Yankeelov
author_facet Matthew T. McKenna
Jared A. Weis
Stephanie L. Barnes
Darren R. Tyson
Michael I. Miga
Vito Quaranta
Thomas E. Yankeelov
author_sort Matthew T. McKenna
title A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
title_short A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
title_full A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
title_fullStr A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
title_full_unstemmed A Predictive Mathematical Modeling Approach for the Study of Doxorubicin Treatment in Triple Negative Breast Cancer
title_sort predictive mathematical modeling approach for the study of doxorubicin treatment in triple negative breast cancer
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/e8a68c155b6c4782a3384e08511f52ab
work_keys_str_mv AT matthewtmckenna apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT jaredaweis apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT stephanielbarnes apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT darrenrtyson apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT michaelimiga apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT vitoquaranta apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT thomaseyankeelov apredictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT matthewtmckenna predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT jaredaweis predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT stephanielbarnes predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT darrenrtyson predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT michaelimiga predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT vitoquaranta predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
AT thomaseyankeelov predictivemathematicalmodelingapproachforthestudyofdoxorubicintreatmentintriplenegativebreastcancer
_version_ 1718395555550330880