State Monitoring Method for Tool Wear in Aerospace Manufacturing Processes Based on a Convolutional Neural Network (CNN)
In the aerospace manufacturing field, tool conditions are essential to ensure the production quality for aerospace parts and reduce processing failures. Therefore, it is extremely necessary to develop a suitable tool condition monitoring method. Thus, we propose a tool wear process state monitoring...
Guardado en:
Autores principales: | Wei Dai, Kui Liang, Bin Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8c01bb88d0a41798900c50602b0da3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aerospace
Publicado: (2014) -
A Conflict Risk Analysis of MAV\UAV Flight in Shared Airspace
por: ChaoYu Xia, et al.
Publicado: (2021) -
Research on the Fatigue of Small Impulse Turbine Blade Based on the Numerical Simulation and Experimental Tests
por: Shijie Liu, et al.
Publicado: (2021) -
Missile IGC Based on Improved Model Predictive Control and Sliding Mode Observer
por: Li Ma, et al.
Publicado: (2021) -
Interpolation-Based Modeling Methodology for Efficient Aeroelastic Control of a Folding Wing
por: Chengyu Yue, et al.
Publicado: (2021)