Androgen deprivation-induced senescence promotes outgrowth of androgen-refractory prostate cancer cells.

Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomeno...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dominick G A Burton, Maria G Giribaldi, Anisleidys Munoz, Katherine Halvorsen, Asmita Patel, Merce Jorda, Carlos Perez-Stable, Priyamvada Rai
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e8c108d649c24e299fff0ac2f2a92555
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD.