A Meta Learning-Based Approach for Zero-Shot Co-Training
The lack of labeled data is one of the main obstacles to the application of machine learning algorithms in a variety of domains. Semi-supervised learning, where additional samples are automatically labeled, is a common and cost-effective approach to address this challenge. A popular semi-supervised...
Guardado en:
Autores principales: | Guy Zaks, Gilad Katz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8c7cfc74f4940ecba62eff0d32920f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
por: Zhiying Cao, et al.
Publicado: (2019) -
An Efficient Network Classification Based on Various-Widths Clustering and Semi-Supervised Stacking
por: Abdulmohsen Almalawi, et al.
Publicado: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Review and Perspectives of Machine Learning Methods for Wind Turbine Fault Diagnosis
por: Mingzhu Tang, et al.
Publicado: (2021) -
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021)