Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications

This paper presents a simplified empirical model for predicting the asphaltic remaining strength factor to be used in estimating the resurfacing thickness for both thin and thick asphaltic surfaces. The proposed model for predicting the asphaltic remaining strength factor in the case of thin asphalt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Khaled A. Abaza
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2019
Materias:
Acceso en línea:https://doaj.org/article/e8cb10aa61fb4e5c97c4142537157c10
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e8cb10aa61fb4e5c97c4142537157c10
record_format dspace
spelling oai:doaj.org-article:e8cb10aa61fb4e5c97c4142537157c102021-11-04T15:51:55ZSimplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications2331-191610.1080/23311916.2019.1571003https://doaj.org/article/e8cb10aa61fb4e5c97c4142537157c102019-01-01T00:00:00Zhttp://dx.doi.org/10.1080/23311916.2019.1571003https://doaj.org/toc/2331-1916This paper presents a simplified empirical model for predicting the asphaltic remaining strength factor to be used in estimating the resurfacing thickness for both thin and thick asphaltic surfaces. The proposed model for predicting the asphaltic remaining strength factor in the case of thin asphaltic surface is mainly a function of key performance indicators and calibration constant (K). In the case of thick asphaltic surface, an average remaining strength factor is proposed which is a function of the existing asphaltic surface thickness, cold milling thickness, and the remaining strength factor associated with thin asphaltic surface. The proposed remaining strength factor is to be used in estimating the resurfacing thickness component due to the strength loss endured by the asphaltic surface. Two case studies are presented to predict the remaining strength factor. The first one applies the remaining strength factor model to estimate the resurfacing thicknesses for two sample projects considering variable rehabilitation scheduling time, while the second one calibrates the remaining strength factor model for a local roadway sample using minimization of the sum of squared errors. The sample results indicate that the remaining strength factor values (0.45–0.94) are lower for thin asphaltic surface compared to the corresponding values (0.72–0.97) for thick surface considering 6–12 years rehabilitation scheduling time, and they are lower for inferior pavement performance compared to a superior one. The sample results also indicate that the optimal (K) values for thin asphaltic surface (0.71–1.24) are considerably lower than the corresponding optimal (K) values for thick surface (2.08–3.83).Khaled A. AbazaTaylor & Francis Grouparticleflexible pavementoverlay designpavement performancepavement rehabilitationpavement managementEngineering (General). Civil engineering (General)TA1-2040ENCogent Engineering, Vol 6, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic flexible pavement
overlay design
pavement performance
pavement rehabilitation
pavement management
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle flexible pavement
overlay design
pavement performance
pavement rehabilitation
pavement management
Engineering (General). Civil engineering (General)
TA1-2040
Khaled A. Abaza
Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
description This paper presents a simplified empirical model for predicting the asphaltic remaining strength factor to be used in estimating the resurfacing thickness for both thin and thick asphaltic surfaces. The proposed model for predicting the asphaltic remaining strength factor in the case of thin asphaltic surface is mainly a function of key performance indicators and calibration constant (K). In the case of thick asphaltic surface, an average remaining strength factor is proposed which is a function of the existing asphaltic surface thickness, cold milling thickness, and the remaining strength factor associated with thin asphaltic surface. The proposed remaining strength factor is to be used in estimating the resurfacing thickness component due to the strength loss endured by the asphaltic surface. Two case studies are presented to predict the remaining strength factor. The first one applies the remaining strength factor model to estimate the resurfacing thicknesses for two sample projects considering variable rehabilitation scheduling time, while the second one calibrates the remaining strength factor model for a local roadway sample using minimization of the sum of squared errors. The sample results indicate that the remaining strength factor values (0.45–0.94) are lower for thin asphaltic surface compared to the corresponding values (0.72–0.97) for thick surface considering 6–12 years rehabilitation scheduling time, and they are lower for inferior pavement performance compared to a superior one. The sample results also indicate that the optimal (K) values for thin asphaltic surface (0.71–1.24) are considerably lower than the corresponding optimal (K) values for thick surface (2.08–3.83).
format article
author Khaled A. Abaza
author_facet Khaled A. Abaza
author_sort Khaled A. Abaza
title Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
title_short Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
title_full Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
title_fullStr Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
title_full_unstemmed Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
title_sort simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
publisher Taylor & Francis Group
publishDate 2019
url https://doaj.org/article/e8cb10aa61fb4e5c97c4142537157c10
work_keys_str_mv AT khaledaabaza simplifiedempiricalapproachforpredictingtheremainingstrengthfactorusedinpavementrehabilitationapplications
_version_ 1718444747851300864