Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system
Abstract Co-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra,...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e8cdcd40f93646c78f58c83a81f4a319 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e8cdcd40f93646c78f58c83a81f4a319 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e8cdcd40f93646c78f58c83a81f4a3192021-12-02T11:46:00ZParticle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system10.1038/s41598-020-80335-92045-2322https://doaj.org/article/e8cdcd40f93646c78f58c83a81f4a3192021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80335-9https://doaj.org/toc/2045-2322Abstract Co-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show the optimal persistent luminescence and nano-particle size.Vitalii BoikoZhengfa DaiMarta MarkowskaCristina LeonelliCecilia MortalòFrancesco ArmettaFederica UrsiGiorgio NasilloMaria Luisa SaladinoDariusz HreniakNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Vitalii Boiko Zhengfa Dai Marta Markowska Cristina Leonelli Cecilia Mortalò Francesco Armetta Federica Ursi Giorgio Nasillo Maria Luisa Saladino Dariusz Hreniak Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
description |
Abstract Co-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show the optimal persistent luminescence and nano-particle size. |
format |
article |
author |
Vitalii Boiko Zhengfa Dai Marta Markowska Cristina Leonelli Cecilia Mortalò Francesco Armetta Federica Ursi Giorgio Nasillo Maria Luisa Saladino Dariusz Hreniak |
author_facet |
Vitalii Boiko Zhengfa Dai Marta Markowska Cristina Leonelli Cecilia Mortalò Francesco Armetta Federica Ursi Giorgio Nasillo Maria Luisa Saladino Dariusz Hreniak |
author_sort |
Vitalii Boiko |
title |
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
title_short |
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
title_full |
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
title_fullStr |
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
title_full_unstemmed |
Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system |
title_sort |
particle size-related limitations of persistent phosphors based on the doped y3al2ga3o12 system |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e8cdcd40f93646c78f58c83a81f4a319 |
work_keys_str_mv |
AT vitaliiboiko particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT zhengfadai particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT martamarkowska particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT cristinaleonelli particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT ceciliamortalo particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT francescoarmetta particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT federicaursi particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT giorgionasillo particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT marialuisasaladino particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system AT dariuszhreniak particlesizerelatedlimitationsofpersistentphosphorsbasedonthedopedy3al2ga3o12system |
_version_ |
1718395257716998144 |