Multivariate random forest prediction of poverty and malnutrition prevalence.
Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models often rely on proprietary data and/or deep or tra...
Enregistré dans:
Auteurs principaux: | Chris Browne, David S Matteson, Linden McBride, Leiqiu Hu, Yanyan Liu, Ying Sun, Jiaming Wen, Christopher B Barrett |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e90e4f8fad114eea9a676e4cc99a8b9b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Poverty and childhood malnutrition: Evidence-based on a nationally representative survey of Bangladesh.
par: Md Ashfikur Rahman, et autres
Publié: (2021) -
Prevalence and Associated Factors of Coexistence of Malnutrition and Sarcopenia in Geriatric Rehabilitation
par: Shinta Nishioka, et autres
Publié: (2021) -
The prevalence and consequences of malnutrition risk in elderly Albanian intensive care unit patients
par: Shpata V, et autres
Publié: (2015) -
Prevalence and prognostic significance of malnutrition in diabetic patients with coronary artery disease: a cohort study
par: Wen Wei, et autres
Publié: (2021) -
Quantifying old-growthness of lowland European beech forests by a multivariate indicator for forest structure
par: Peter Meyer, et autres
Publié: (2021)