Multivariate random forest prediction of poverty and malnutrition prevalence.

Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models often rely on proprietary data and/or deep or tra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chris Browne, David S Matteson, Linden McBride, Leiqiu Hu, Yanyan Liu, Ying Sun, Jiaming Wen, Christopher B Barrett
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e90e4f8fad114eea9a676e4cc99a8b9b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares