Multivariate random forest prediction of poverty and malnutrition prevalence.
Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models often rely on proprietary data and/or deep or tra...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e90e4f8fad114eea9a676e4cc99a8b9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!