Multivariate random forest prediction of poverty and malnutrition prevalence.
Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models often rely on proprietary data and/or deep or tra...
Enregistré dans:
Auteurs principaux: | , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e90e4f8fad114eea9a676e4cc99a8b9b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!