Multivariate random forest prediction of poverty and malnutrition prevalence.

Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models often rely on proprietary data and/or deep or tra...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chris Browne, David S Matteson, Linden McBride, Leiqiu Hu, Yanyan Liu, Ying Sun, Jiaming Wen, Christopher B Barrett
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/e90e4f8fad114eea9a676e4cc99a8b9b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!