Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
Over the past few years, convolutional neural network (CNN) has been broadly adopted in remote sensing (RS) imagery processing areas due to its impressive capabilities in feature extraction. Nevertheless, it is still a challenge for CNN-based hyperspectral image (HSI) classification methods to extra...
Guardado en:
Autores principales: | Xiaochen Lu, Dezheng Yang, Fengde Jia, Yunlong Yang, Lei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e92dd3f77f3e4f1aba65b48c4ec7ec84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
por: Su Qiao, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
A Hybrid Capsule Network for Hyperspectral Image Classification
por: Massoud Khodadadzadeh, et al.
Publicado: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021)