Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
Over the past few years, convolutional neural network (CNN) has been broadly adopted in remote sensing (RS) imagery processing areas due to its impressive capabilities in feature extraction. Nevertheless, it is still a challenge for CNN-based hyperspectral image (HSI) classification methods to extra...
Enregistré dans:
Auteurs principaux: | Xiaochen Lu, Dezheng Yang, Fengde Jia, Yunlong Yang, Lei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e92dd3f77f3e4f1aba65b48c4ec7ec84 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
par: Su Qiao, et autres
Publié: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
par: Bing Liu, et autres
Publié: (2021) -
A Hybrid Capsule Network for Hyperspectral Image Classification
par: Massoud Khodadadzadeh, et autres
Publié: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
par: Fei Ma, et autres
Publié: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
par: Xiwu Zhong, et autres
Publié: (2021)