Heterogeneous treatment effect analysis based on machine‐learning methodology
Abstract Heterogeneous treatment effect (HTE) analysis focuses on examining varying treatment effects for individuals or subgroups in a population. For example, an HTE‐informed understanding can critically guide physicians to individualize the medical treatment for a certain disease. However, HTE an...
Guardado en:
Autores principales: | Xiajing Gong, Meng Hu, Mahashweta Basu, Liang Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e940d1e300514556aecec097f696b4a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Proteomic analysis reveals rotator cuff injury caused by oxidative stress
por: Tao Yuan, et al.
Publicado: (2021) -
Management of antipsychotic treatment discontinuation and interruptions using model-based simulations
por: Samtani MN, et al.
Publicado: (2012) -
RETRACTION NOTICE: A meta-analysis of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody treatment for COVID-19 patients
Publicado: (2021) -
Author response to: correspondence to: ‘A meta-analysis of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody treatment for COVID-19 patients’
por: Jin-Tao Guan, et al.
Publicado: (2021) -
Use of ipilimumab in the treatment of melanoma
por: Acharya UH, et al.
Publicado: (2013)