A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources
<p>Sensitive and accurate detection of sulfur dioxide (SO<span class="inline-formula"><sub>2</sub></span>) from space is important for monitoring and estimating global sulfur emissions. Inspired by detection methods applied in the thermal infrared, we present...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e95768eaa5b34689a1188007083db0dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e95768eaa5b34689a1188007083db0dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e95768eaa5b34689a1188007083db0dd2021-11-17T12:38:17ZA sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources10.5194/acp-21-16727-20211680-73161680-7324https://doaj.org/article/e95768eaa5b34689a1188007083db0dd2021-11-01T00:00:00Zhttps://acp.copernicus.org/articles/21/16727/2021/acp-21-16727-2021.pdfhttps://doaj.org/toc/1680-7316https://doaj.org/toc/1680-7324<p>Sensitive and accurate detection of sulfur dioxide (SO<span class="inline-formula"><sub>2</sub></span>) from space is important for monitoring and estimating global sulfur emissions. Inspired by detection methods applied in the thermal infrared, we present here a new scheme to retrieve SO<span class="inline-formula"><sub>2</sub></span> columns from satellite observations of ultraviolet back-scattered radiances. The retrieval is based on a measurement error covariance matrix to fully represent the SO<span class="inline-formula"><sub>2</sub></span>-free radiance variability, so that the SO<span class="inline-formula"><sub>2</sub></span> slant column density is the only retrieved parameter of the algorithm. We demonstrate this approach, named COBRA, on measurements from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (S-5P) satellite. We show that the method reduces significantly both the noise and biases present in the current TROPOMI operational DOAS SO<span class="inline-formula"><sub>2</sub></span> retrievals. The performance of this technique is also benchmarked against that of the principal component algorithm (PCA) approach. We find that the quality of the data is similar and even slightly better with the proposed COBRA approach. The ability of the algorithm to retrieve SO<span class="inline-formula"><sub>2</sub></span> accurately is further supported by comparison with ground-based observations. We illustrate the great sensitivity of the method with a high-resolution global SO<span class="inline-formula"><sub>2</sub></span> map, considering 2.5 years of TROPOMI data. In addition to the known sources, we detect many new SO<span class="inline-formula"><sub>2</sub></span> emission hotspots worldwide. For the largest sources, we use the COBRA data to estimate SO<span class="inline-formula"><sub>2</sub></span> emission rates. Results are comparable to other recently published TROPOMI-based SO<span class="inline-formula"><sub>2</sub></span> emissions estimates, but the associated uncertainties are significantly lower than with the operational data. Next, for a limited number of weak sources, we demonstrate the potential of our data for quantifying SO<span class="inline-formula"><sub>2</sub></span> emissions with a detection limit of about 8 kt yr<span class="inline-formula"><sup>−1</sup></span>, a factor of 4 better than the emissions derived from the Ozone Monitoring Instrument (OMI). We anticipate that the systematic use of our TROPOMI COBRA SO<span class="inline-formula"><sub>2</sub></span> column data set at a global scale will allow missing sources to be identified and quantified and help improve SO<span class="inline-formula"><sub>2</sub></span> emission inventories.</p>N. TheysV. FioletovC. LiC. LiI. De SmedtC. LerotC. McLindenN. KrotkovD. GriffinL. ClarisseP. HedeltD. LoyolaT. WagnerV. KumarA. InnesR. RibasF. HendrickJ. VlietinckH. BrenotM. Van RoozendaelCopernicus PublicationsarticlePhysicsQC1-999ChemistryQD1-999ENAtmospheric Chemistry and Physics, Vol 21, Pp 16727-16744 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
Physics QC1-999 Chemistry QD1-999 N. Theys V. Fioletov C. Li C. Li I. De Smedt C. Lerot C. McLinden N. Krotkov D. Griffin L. Clarisse P. Hedelt D. Loyola T. Wagner V. Kumar A. Innes R. Ribas F. Hendrick J. Vlietinck H. Brenot M. Van Roozendael A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
description |
<p>Sensitive and accurate detection of sulfur dioxide (SO<span class="inline-formula"><sub>2</sub></span>) from space is
important for monitoring and estimating global sulfur emissions. Inspired by
detection methods applied in the thermal infrared, we present here a new
scheme to retrieve SO<span class="inline-formula"><sub>2</sub></span> columns from satellite observations of
ultraviolet back-scattered radiances. The retrieval is based on a
measurement error covariance matrix to fully represent the SO<span class="inline-formula"><sub>2</sub></span>-free
radiance variability, so that the SO<span class="inline-formula"><sub>2</sub></span> slant column density is the only
retrieved parameter of the algorithm. We demonstrate this approach, named
COBRA, on measurements from the TROPOspheric Monitoring Instrument (TROPOMI)
aboard the Sentinel-5 Precursor (S-5P) satellite. We show that the method
reduces significantly both the noise and biases present in the current
TROPOMI operational DOAS SO<span class="inline-formula"><sub>2</sub></span> retrievals. The performance of
this technique is also benchmarked against that of the principal component
algorithm (PCA) approach. We find that the quality of the data is similar
and even slightly better with the proposed COBRA approach. The ability of
the algorithm to retrieve SO<span class="inline-formula"><sub>2</sub></span> accurately is further supported
by comparison with ground-based observations. We illustrate the great
sensitivity of the method with a high-resolution global SO<span class="inline-formula"><sub>2</sub></span> map,
considering 2.5 years of TROPOMI data. In addition to the known
sources, we detect many new SO<span class="inline-formula"><sub>2</sub></span> emission hotspots worldwide.
For the largest sources, we use the COBRA data to estimate SO<span class="inline-formula"><sub>2</sub></span> emission
rates. Results are comparable to other recently published TROPOMI-based
SO<span class="inline-formula"><sub>2</sub></span> emissions estimates, but the associated uncertainties are
significantly lower than with the operational data. Next, for a limited
number of weak sources, we demonstrate the potential of our data for
quantifying SO<span class="inline-formula"><sub>2</sub></span> emissions with a detection limit of about 8 kt yr<span class="inline-formula"><sup>−1</sup></span>, a factor of 4 better than the emissions derived from the Ozone
Monitoring Instrument (OMI). We anticipate that the systematic use of our
TROPOMI COBRA SO<span class="inline-formula"><sub>2</sub></span> column data set at a global scale will allow missing sources to be identified and quantified and help improve SO<span class="inline-formula"><sub>2</sub></span>
emission inventories.</p> |
format |
article |
author |
N. Theys V. Fioletov C. Li C. Li I. De Smedt C. Lerot C. McLinden N. Krotkov D. Griffin L. Clarisse P. Hedelt D. Loyola T. Wagner V. Kumar A. Innes R. Ribas F. Hendrick J. Vlietinck H. Brenot M. Van Roozendael |
author_facet |
N. Theys V. Fioletov C. Li C. Li I. De Smedt C. Lerot C. McLinden N. Krotkov D. Griffin L. Clarisse P. Hedelt D. Loyola T. Wagner V. Kumar A. Innes R. Ribas F. Hendrick J. Vlietinck H. Brenot M. Van Roozendael |
author_sort |
N. Theys |
title |
A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
title_short |
A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
title_full |
A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
title_fullStr |
A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
title_full_unstemmed |
A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources |
title_sort |
sulfur dioxide covariance-based retrieval algorithm (cobra): application to tropomi reveals new emission sources |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/e95768eaa5b34689a1188007083db0dd |
work_keys_str_mv |
AT ntheys asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT vfioletov asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cli asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cli asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT idesmedt asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT clerot asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cmclinden asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT nkrotkov asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT dgriffin asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT lclarisse asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT phedelt asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT dloyola asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT twagner asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT vkumar asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT ainnes asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT rribas asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT fhendrick asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT jvlietinck asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT hbrenot asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT mvanroozendael asulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT ntheys sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT vfioletov sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cli sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cli sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT idesmedt sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT clerot sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT cmclinden sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT nkrotkov sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT dgriffin sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT lclarisse sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT phedelt sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT dloyola sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT twagner sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT vkumar sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT ainnes sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT rribas sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT fhendrick sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT jvlietinck sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT hbrenot sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources AT mvanroozendael sulfurdioxidecovariancebasedretrievalalgorithmcobraapplicationtotropomirevealsnewemissionsources |
_version_ |
1718425642786095104 |