Predicting COVID-19 mortality risk in Toronto, Canada: a comparison of tree-based and regression-based machine learning methods
Abstract Background Coronavirus disease (COVID-19) presents an unprecedented threat to global health worldwide. Accurately predicting the mortality risk among the infected individuals is crucial for prioritizing medical care and mitigating the healthcare system’s burden. The present study aimed to a...
Enregistré dans:
Auteurs principaux: | Cindy Feng, George Kephart, Elizabeth Juarez-Colunga |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e95c431b7b8c4736b3daa26d7bd17fa1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media
par: Sebastian Kurten, et autres
Publié: (2021) -
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
par: Dariusz Majerek, et autres
Publié: (2021) -
Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data
par: Zinhle Mashaba-Munghemezulu, et autres
Publié: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
par: Xin Zhao, et autres
Publié: (2021) -
Application of gradient tree boosting regressor for the prediction of scour depth around bridge piers
par: B. M. Sreedhara, et autres
Publié: (2021)