Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials

Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tian Xie, Arthur France-Lanord, Yanming Wang, Yang Shao-Horn, Jeffrey C. Grossman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations.