Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials

Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tian Xie, Arthur France-Lanord, Yanming Wang, Yang Shao-Horn, Jeffrey C. Grossman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e95ce383366d4ae098b08194f9e7596d
record_format dspace
spelling oai:doaj.org-article:e95ce383366d4ae098b08194f9e7596d2021-12-02T17:01:28ZGraph dynamical networks for unsupervised learning of atomic scale dynamics in materials10.1038/s41467-019-10663-62041-1723https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10663-6https://doaj.org/toc/2041-1723Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations.Tian XieArthur France-LanordYanming WangYang Shao-HornJeffrey C. GrossmanNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tian Xie
Arthur France-Lanord
Yanming Wang
Yang Shao-Horn
Jeffrey C. Grossman
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
description Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations.
format article
author Tian Xie
Arthur France-Lanord
Yanming Wang
Yang Shao-Horn
Jeffrey C. Grossman
author_facet Tian Xie
Arthur France-Lanord
Yanming Wang
Yang Shao-Horn
Jeffrey C. Grossman
author_sort Tian Xie
title Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
title_short Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
title_full Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
title_fullStr Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
title_full_unstemmed Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
title_sort graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d
work_keys_str_mv AT tianxie graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials
AT arthurfrancelanord graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials
AT yanmingwang graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials
AT yangshaohorn graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials
AT jeffreycgrossman graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials
_version_ 1718382120754216960