Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simul...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e95ce383366d4ae098b08194f9e7596d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e95ce383366d4ae098b08194f9e7596d2021-12-02T17:01:28ZGraph dynamical networks for unsupervised learning of atomic scale dynamics in materials10.1038/s41467-019-10663-62041-1723https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10663-6https://doaj.org/toc/2041-1723Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations.Tian XieArthur France-LanordYanming WangYang Shao-HornJeffrey C. GrossmanNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tian Xie Arthur France-Lanord Yanming Wang Yang Shao-Horn Jeffrey C. Grossman Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
description |
Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations. |
format |
article |
author |
Tian Xie Arthur France-Lanord Yanming Wang Yang Shao-Horn Jeffrey C. Grossman |
author_facet |
Tian Xie Arthur France-Lanord Yanming Wang Yang Shao-Horn Jeffrey C. Grossman |
author_sort |
Tian Xie |
title |
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
title_short |
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
title_full |
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
title_fullStr |
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
title_full_unstemmed |
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
title_sort |
graph dynamical networks for unsupervised learning of atomic scale dynamics in materials |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d |
work_keys_str_mv |
AT tianxie graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials AT arthurfrancelanord graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials AT yanmingwang graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials AT yangshaohorn graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials AT jeffreycgrossman graphdynamicalnetworksforunsupervisedlearningofatomicscaledynamicsinmaterials |
_version_ |
1718382120754216960 |