Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
Understanding local dynamical processes in materials is challenging due to the complexity of the local atomic environments. Here the authors propose a graph dynamical networks approach that is shown to learn the atomic scale dynamics in arbitrary phases and environments from molecular dynamics simul...
Guardado en:
Autores principales: | Tian Xie, Arthur France-Lanord, Yanming Wang, Yang Shao-Horn, Jeffrey C. Grossman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e95ce383366d4ae098b08194f9e7596d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene
por: Sapna Sinha, et al.
Publicado: (2020) -
Unsupervised generative and graph representation learning for modelling cell differentiation
por: Ioana Bica, et al.
Publicado: (2020) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Shicheng Li, et al.
Publicado: (2021) -
Atomic-scale structural signature of dynamic heterogeneities in metallic liquids
por: Alain Pasturel, et al.
Publicado: (2017) -
Defect detection in atomic-resolution images via unsupervised learning with translational invariance
por: Yueming Guo, et al.
Publicado: (2021)