Learning endometriosis phenotypes from patient-generated data
Abstract Endometriosis is a systemic and chronic condition in women of childbearing age, yet a highly enigmatic disease with unresolved questions: there are no known biomarkers, nor established clinical stages. We here investigate the use of patient-generated health data and data-driven phenotyping...
Guardado en:
Autores principales: | Iñigo Urteaga, Mollie McKillop, Noémie Elhadad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e95ea8d5ac0a40e7ae6663bd16165d4b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data
por: Kathy Li, et al.
Publicado: (2020) -
Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
por: Allan Tucker, et al.
Publicado: (2020) -
Generating insights in uncharted territories: real-time learning from data in critically ill patients–an implementer report
por: Davy van de Sande, et al.
Publicado: (2021) -
Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation
por: August DuMont Schütte, et al.
Publicado: (2021) -
Privacy protections to encourage use of health-relevant digital data in a learning health system
por: Deven McGraw, et al.
Publicado: (2021)