TwinCons: Conservation score for uncovering deep sequence similarity and divergence
We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a ‘cost’ of transforming one group to the other at each position of the alignme...
Guardado en:
Autores principales: | Petar I. Penev, Claudia Alvarez-Carreño, Eric Smith, Anton S. Petrov, Loren Dean Williams |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e964b131d31148a489815dceb4e20530 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
TwinCons: Conservation score for uncovering deep sequence similarity and divergence.
por: Petar I Penev, et al.
Publicado: (2021) -
Geometric similarity of the twin collapsed glaciers in the west Tibet
por: Hu Wentao, et al.
Publicado: (2021) -
Uncovering Divergence in Gene Expression Regulation in the Adaptation of Yeast to Nitrogen Scarcity
por: Carlos A. Villarroel, et al.
Publicado: (2021) -
Brain age prediction using deep learning uncovers associated sequence variants
por: B. A. Jonsson, et al.
Publicado: (2019) -
Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
por: Ying Wang, et al.
Publicado: (2020)