Evaluating the informativeness of deep learning annotations for human complex diseases

Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.

Guardado en:
Detalles Bibliográficos
Autores principales: Kushal K. Dey, Bryce van de Geijn, Samuel Sungil Kim, Farhad Hormozdiari, David R. Kelley, Alkes L. Price
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b80
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e966c41c45b24c86a35cad7f34f42b80
record_format dspace
spelling oai:doaj.org-article:e966c41c45b24c86a35cad7f34f42b802021-12-02T17:24:13ZEvaluating the informativeness of deep learning annotations for human complex diseases10.1038/s41467-020-18515-42041-1723https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b802020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18515-4https://doaj.org/toc/2041-1723Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.Kushal K. DeyBryce van de GeijnSamuel Sungil KimFarhad HormozdiariDavid R. KelleyAlkes L. PriceNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kushal K. Dey
Bryce van de Geijn
Samuel Sungil Kim
Farhad Hormozdiari
David R. Kelley
Alkes L. Price
Evaluating the informativeness of deep learning annotations for human complex diseases
description Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.
format article
author Kushal K. Dey
Bryce van de Geijn
Samuel Sungil Kim
Farhad Hormozdiari
David R. Kelley
Alkes L. Price
author_facet Kushal K. Dey
Bryce van de Geijn
Samuel Sungil Kim
Farhad Hormozdiari
David R. Kelley
Alkes L. Price
author_sort Kushal K. Dey
title Evaluating the informativeness of deep learning annotations for human complex diseases
title_short Evaluating the informativeness of deep learning annotations for human complex diseases
title_full Evaluating the informativeness of deep learning annotations for human complex diseases
title_fullStr Evaluating the informativeness of deep learning annotations for human complex diseases
title_full_unstemmed Evaluating the informativeness of deep learning annotations for human complex diseases
title_sort evaluating the informativeness of deep learning annotations for human complex diseases
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b80
work_keys_str_mv AT kushalkdey evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
AT brycevandegeijn evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
AT samuelsungilkim evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
AT farhadhormozdiari evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
AT davidrkelley evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
AT alkeslprice evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases
_version_ 1718380941774159872