Evaluating the informativeness of deep learning annotations for human complex diseases
Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e966c41c45b24c86a35cad7f34f42b80 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e966c41c45b24c86a35cad7f34f42b802021-12-02T17:24:13ZEvaluating the informativeness of deep learning annotations for human complex diseases10.1038/s41467-020-18515-42041-1723https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b802020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18515-4https://doaj.org/toc/2041-1723Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.Kushal K. DeyBryce van de GeijnSamuel Sungil KimFarhad HormozdiariDavid R. KelleyAlkes L. PriceNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kushal K. Dey Bryce van de Geijn Samuel Sungil Kim Farhad Hormozdiari David R. Kelley Alkes L. Price Evaluating the informativeness of deep learning annotations for human complex diseases |
description |
Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease. |
format |
article |
author |
Kushal K. Dey Bryce van de Geijn Samuel Sungil Kim Farhad Hormozdiari David R. Kelley Alkes L. Price |
author_facet |
Kushal K. Dey Bryce van de Geijn Samuel Sungil Kim Farhad Hormozdiari David R. Kelley Alkes L. Price |
author_sort |
Kushal K. Dey |
title |
Evaluating the informativeness of deep learning annotations for human complex diseases |
title_short |
Evaluating the informativeness of deep learning annotations for human complex diseases |
title_full |
Evaluating the informativeness of deep learning annotations for human complex diseases |
title_fullStr |
Evaluating the informativeness of deep learning annotations for human complex diseases |
title_full_unstemmed |
Evaluating the informativeness of deep learning annotations for human complex diseases |
title_sort |
evaluating the informativeness of deep learning annotations for human complex diseases |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b80 |
work_keys_str_mv |
AT kushalkdey evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases AT brycevandegeijn evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases AT samuelsungilkim evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases AT farhadhormozdiari evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases AT davidrkelley evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases AT alkeslprice evaluatingtheinformativenessofdeeplearningannotationsforhumancomplexdiseases |
_version_ |
1718380941774159872 |