Evaluating the informativeness of deep learning annotations for human complex diseases
Deep learning models have shown great promise in predicting regulatory effects from DNA sequence. Here the authors evaluate sequence-based epigenomic deep learning models and conclude that these models are not yet ready to inform our knowledge of human disease.
Guardado en:
Autores principales: | Kushal K. Dey, Bryce van de Geijn, Samuel Sungil Kim, Farhad Hormozdiari, David R. Kelley, Alkes L. Price |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e966c41c45b24c86a35cad7f34f42b80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Functional disease architectures reveal unique biological role of transposable elements
por: Farhad Hormozdiari, et al.
Publicado: (2019) -
Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease
por: Samuel S. Kim, et al.
Publicado: (2020) -
Annotation-efficient deep learning for automatic medical image segmentation
por: Shanshan Wang, et al.
Publicado: (2021) -
Harnessing clinical annotations to improve deep learning performance in prostate segmentation.
por: Karthik V Sarma, et al.
Publicado: (2021) -
Embeddings from deep learning transfer GO annotations beyond homology
por: Maria Littmann, et al.
Publicado: (2021)