A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem
The plain Newton-min algorithm for solving the linear complementarity problem (LCP) “0⩽x⊥(Mx+q)⩾0” can be viewed as an instance of the plain semismooth Newton method on the equational version “min(x,Mx+q)=0” of the problem. This algorithm converges for any q when M is an M-matrix, but not when it is...
Guardado en:
Autores principales: | Jean-Pierre Dussault, Mathieu Frappier, Jean Charles Gilbert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e96a6ead91534eb1801297a47f42427e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dualization and discretization of linear-quadratic control problems with bang–bang solutions
por: Walter Alt, et al.
Publicado: (2016) -
Robust flows with losses and improvability in evacuation planning
por: Marc Goerigk, et al.
Publicado: (2016) -
A comparison of four approaches from stochastic programming for large-scale unit-commitment
por: Wim van Ackooij
Publicado: (2017) -
A globally convergent algorithm for MPCC
por: Abdeslam Kadrani, et al.
Publicado: (2015) -
Uncontrolled inexact information within bundle methods
por: Jérôme Malick, et al.
Publicado: (2017)