Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks
Abstract Imaging with an adaptive optics scanning light ophthalmoscope (AOSLO) enables direct visualization of the cone photoreceptor mosaic in the living human retina. Quantitative analysis of AOSLO images typically requires manual grading, which is time consuming, and subjective; thus, automated a...
Guardado en:
Autores principales: | David Cunefare, Leyuan Fang, Robert F. Cooper, Alfredo Dubra, Joseph Carroll, Sina Farsiu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9741e0bd1954ed1a093b2300dddbf58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Circadian regulation of vertebrate cone photoreceptor function
por: Jingjing Zang, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
por: Fabio Lopes, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
The Emergence of Open-Source Software in China
por: Guohua Pan, et al.
Publicado: (2007)