Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks
Abstract Imaging with an adaptive optics scanning light ophthalmoscope (AOSLO) enables direct visualization of the cone photoreceptor mosaic in the living human retina. Quantitative analysis of AOSLO images typically requires manual grading, which is time consuming, and subjective; thus, automated a...
Enregistré dans:
| Auteurs principaux: | David Cunefare, Leyuan Fang, Robert F. Cooper, Alfredo Dubra, Joseph Carroll, Sina Farsiu |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2017
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/e9741e0bd1954ed1a093b2300dddbf58 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Circadian regulation of vertebrate cone photoreceptor function
par: Jingjing Zang, et autres
Publié: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
par: Chuanbo Wang, et autres
Publié: (2020) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
par: Fabio Lopes, et autres
Publié: (2021) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
par: Ramla Bensaci, et autres
Publié: (2021) -
The Emergence of Open-Source Software in China
par: Guohua Pan, et autres
Publié: (2007)