Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques
Millet is a primary food for people living in the dry and semi-dry regions and is dispersed within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts to establish food originality, there is a global need to create Protected Geographical Indication (PGI) and...
Enregistré dans:
Auteurs principaux: | Muhammad Hilal Kabir, Mahamed Lamine Guindo, Rongqin Chen, Fei Liu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e986624f781649fe8f97a3318a2597c5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prediction of the Nutritive Value of Pasture Silage by Near Infrared Spectroscopy (NIRS)
par: Restaino,Ernesto A, et autres
Publié: (2009) -
Usefulness of near infrared reflectance (NIR) spectroscopy and chemometrics to discriminate between fishmeal, meat meal and soya meal samples
par: Cozzolino,Daniel, et autres
Publié: (2009) -
ESTIMATING DENSITY AND PULPING YIELD OF E. globulus WOOD: COMPARISON OF NEAR-INFRARED (NIR) AND MID-INFRARED (MIR)
par: RUIZ,JOSÉ, et autres
Publié: (2005) -
Potential of Vis-NIR to measure heavy metals in different varieties of organic-fertilizers using Boruta and deep belief network
par: Mahamed Lamine Guindo, et autres
Publié: (2021) -
Use of VIS-NIRS for land management classification with a support vector machine and prediction of soil organic carbon and other soil properties
par: Debaene,Guillaume, et autres
Publié: (2014)