Use of artificial intelligence to recover mandibular morphology after disease

Abstract Mandibular tumors and radical oral cancer surgery often cause bone dysmorphia and defects. Most patients present with noticeable mandibular deformations, and doctors often have difficulty determining their exact mandibular morphology. In this study, a deep convolutional generative adversari...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ye Liang, JingJing Huan, Jia-Da Li, CanHua Jiang, ChangYun Fang, YongGang Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e98f70c7f9544bc1a487203d19da9700
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Mandibular tumors and radical oral cancer surgery often cause bone dysmorphia and defects. Most patients present with noticeable mandibular deformations, and doctors often have difficulty determining their exact mandibular morphology. In this study, a deep convolutional generative adversarial network (DCGAN) called CTGAN is proposed to complete 3D mandibular cone beam computed tomography data from CT data. After extensive training, CTGAN was tested on 6 mandibular tumor cases, resulting in 3D virtual mandibular completion. We found that CTGAN can generate mandibles with different levels and rich morphology, including positional and angular changes and local patterns. The completion results are shown as tomographic images combining generated and natural areas. The 3D generated mandibles have the anatomical morphology of the real mandibles and transition smoothly to the portions without disease, showing that CTGAN constructs mandibles with the expected patient characteristics and is suitable for mandibular morphological completion. The presented modeling principles can be applied to other areas for 3D morphological completion from medical images. Clinical trial registration: This study is not a clinical trial. Patient data were only used for testing in a virtual environment. The use of the digital data used in this study was ethically approved.