Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks

Deep convolutional neural networks (DCNNs) are able to identify faces on par with humans. Here, the authors record neuronal activity from higher visual areas in humans and show that face-selective responses in the brain show similarity to those in the intermediate layers of the DCNN.

Guardado en:
Detalles Bibliográficos
Autores principales: Shany Grossman, Guy Gaziv, Erin M. Yeagle, Michal Harel, Pierre Mégevand, David M. Groppe, Simon Khuvis, Jose L. Herrero, Michal Irani, Ashesh D. Mehta, Rafael Malach
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/e98fc9d58d49400dacc21b3515cf7cb8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Deep convolutional neural networks (DCNNs) are able to identify faces on par with humans. Here, the authors record neuronal activity from higher visual areas in humans and show that face-selective responses in the brain show similarity to those in the intermediate layers of the DCNN.