Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks
Deep convolutional neural networks (DCNNs) are able to identify faces on par with humans. Here, the authors record neuronal activity from higher visual areas in humans and show that face-selective responses in the brain show similarity to those in the intermediate layers of the DCNN.
Guardado en:
Autores principales: | Shany Grossman, Guy Gaziv, Erin M. Yeagle, Michal Harel, Pierre Mégevand, David M. Groppe, Simon Khuvis, Jose L. Herrero, Michal Irani, Ashesh D. Mehta, Rafael Malach |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e98fc9d58d49400dacc21b3515cf7cb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neuronal baseline shifts underlying boundary setting during free recall
por: Yitzhak Norman, et al.
Publicado: (2017) -
Robust face recognition based on multi-task convolutional neural network
por: Huilin Ge, et al.
Publicado: (2021) -
Muslims and Christians Face to Face
por: Salem A. Salem
Publicado: (1998) -
Rapid face adaptation distributes representation in inferior-temporal cortex across time and neuronal dimensions
por: Abdol-Hossein Vahabie, et al.
Publicado: (2017) -
An Integrated Neural Framework for Dynamic and Static Face Processing
por: Michal Bernstein, et al.
Publicado: (2018)