Automatic classification of medical image modality and anatomical location using convolutional neural network.
Modern radiologic images comply with DICOM (digital imaging and communications in medicine) standard, which, upon conversion to other image format, would lose its image detail and information such as patient demographics or type of image modality that DICOM format carries. As there is a growing inte...
Guardado en:
Autores principales: | Chen-Hua Chiang, Chi-Lun Weng, Hung-Wen Chiu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e99ea678c0fe4594864b353b4cbfed90 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Hirotoshi Takiyama, et al.
Publicado: (2018) -
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Xavier P. Burgos-Artizzu, et al.
Publicado: (2020) -
Deep Convolutional Neural Network with KNN Regression for Automatic Image Annotation
por: Ramla Bensaci, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020)