Connecting concepts in the brain by mapping cortical representations of semantic relations
Researchers leverage advances in machine learning to study the brain’s mechanism for natural language processing. Results suggest that the brain represents a continuous semantic space and uses distributed cortical networks for differential coding of semantic relations.
Guardado en:
Autores principales: | Yizhen Zhang, Kuan Han, Robert Worth, Zhongming Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e99f69ca19b24eca9c4bfaffecacba19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Behavioral correlates of cortical semantic representations modeled by word vectors.
por: Satoshi Nishida, et al.
Publicado: (2021) -
Dynamic reconfiguration of cortical functional connectivity across brain states
por: Iain Stitt, et al.
Publicado: (2017) -
Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes
por: Gideon Rosenthal, et al.
Publicado: (2018) -
Sensory-motor cortices shape functional connectivity dynamics in the human brain
por: Xiaolu Kong, et al.
Publicado: (2021) -
Specific hippocampal representations are linked to generalized cortical representations in memory
por: Jai Y. Yu, et al.
Publicado: (2018)