A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation

To solve the problems such as obvious speckle noise and serious spectral distortion when existing fusion methods are applied to the fusion of optical and SAR images, this paper proposes a fusion method for optical and SAR images based on Dense-UGAN and Gram–Schmidt transformation. Firstly, dense con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yingying Kong, Fang Hong, Henry Leung, Xiangyang Peng
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/e9a6d445cddf4ff59587f1d9f5202c93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e9a6d445cddf4ff59587f1d9f5202c93
record_format dspace
spelling oai:doaj.org-article:e9a6d445cddf4ff59587f1d9f5202c932021-11-11T18:52:32ZA Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation10.3390/rs132142742072-4292https://doaj.org/article/e9a6d445cddf4ff59587f1d9f5202c932021-10-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4274https://doaj.org/toc/2072-4292To solve the problems such as obvious speckle noise and serious spectral distortion when existing fusion methods are applied to the fusion of optical and SAR images, this paper proposes a fusion method for optical and SAR images based on Dense-UGAN and Gram–Schmidt transformation. Firstly, dense connection with U-shaped network (Dense-UGAN) are used in GAN generator to deepen the network structure and obtain deeper source image information. Secondly, according to the particularity of SAR imaging mechanism, SGLCM loss for preserving SAR texture features and PSNR loss for reducing SAR speckle noise are introduced into the generator loss function. Meanwhile in order to keep more SAR image structure, SSIM loss is introduced to discriminator loss function to make the generated image retain more spatial features. In this way, the generated high-resolution image has both optical contour characteristics and SAR texture characteristics. Finally, the GS transformation of optical and generated image retains the necessary spectral properties. Experimental results show that the proposed method can well preserve the spectral information of optical images and texture information of SAR images, and also reduce the generation of speckle noise at the same time. The metrics are superior to other algorithms that currently perform well.Yingying KongFang HongHenry LeungXiangyang PengMDPI AGarticleimage fusiongenerative adversarial networkloss functionGram–Schmidtremote sensing imageScienceQENRemote Sensing, Vol 13, Iss 4274, p 4274 (2021)
institution DOAJ
collection DOAJ
language EN
topic image fusion
generative adversarial network
loss function
Gram–Schmidt
remote sensing image
Science
Q
spellingShingle image fusion
generative adversarial network
loss function
Gram–Schmidt
remote sensing image
Science
Q
Yingying Kong
Fang Hong
Henry Leung
Xiangyang Peng
A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
description To solve the problems such as obvious speckle noise and serious spectral distortion when existing fusion methods are applied to the fusion of optical and SAR images, this paper proposes a fusion method for optical and SAR images based on Dense-UGAN and Gram–Schmidt transformation. Firstly, dense connection with U-shaped network (Dense-UGAN) are used in GAN generator to deepen the network structure and obtain deeper source image information. Secondly, according to the particularity of SAR imaging mechanism, SGLCM loss for preserving SAR texture features and PSNR loss for reducing SAR speckle noise are introduced into the generator loss function. Meanwhile in order to keep more SAR image structure, SSIM loss is introduced to discriminator loss function to make the generated image retain more spatial features. In this way, the generated high-resolution image has both optical contour characteristics and SAR texture characteristics. Finally, the GS transformation of optical and generated image retains the necessary spectral properties. Experimental results show that the proposed method can well preserve the spectral information of optical images and texture information of SAR images, and also reduce the generation of speckle noise at the same time. The metrics are superior to other algorithms that currently perform well.
format article
author Yingying Kong
Fang Hong
Henry Leung
Xiangyang Peng
author_facet Yingying Kong
Fang Hong
Henry Leung
Xiangyang Peng
author_sort Yingying Kong
title A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
title_short A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
title_full A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
title_fullStr A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
title_full_unstemmed A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation
title_sort fusion method of optical image and sar image based on dense-ugan and gram–schmidt transformation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/e9a6d445cddf4ff59587f1d9f5202c93
work_keys_str_mv AT yingyingkong afusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT fanghong afusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT henryleung afusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT xiangyangpeng afusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT yingyingkong fusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT fanghong fusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT henryleung fusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
AT xiangyangpeng fusionmethodofopticalimageandsarimagebasedondenseuganandgramschmidttransformation
_version_ 1718431737797672960