Why we habitually engage in null-hypothesis significance testing: A qualitative study.
<h4>Background</h4>Null Hypothesis Significance Testing (NHST) is the most familiar statistical procedure for making inferences about population effects. Important problems associated with this method have been addressed and various alternatives that overcome these problems have been dev...
Guardado en:
Autores principales: | Jonah Stunt, Leonie van Grootel, Lex Bouter, David Trafimow, Trynke Hoekstra, Michiel de Boer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9ad47662d734b5dbd15f40e68ba0801 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data analysis in forest sciences: why do we continue using null hypothesis significance tests?
por: Estay,Sergio A, et al.
Publicado: (2011) -
Setting an optimal α that minimizes errors in null hypothesis significance tests.
por: Joseph F Mudge, et al.
Publicado: (2012) -
Journal of articles in support of the null hypothesis
Publicado: (2002) -
Guest Editorial: This is Why We Read. This is Why We Write
por: David W Jardine
Publicado: (2014) -
Why are viral genomes so fragile? The bottleneck hypothesis.
por: Nono S C Merleau, et al.
Publicado: (2021)