Spin-helix Larmor mode

Abstract A two-dimensional electron gas (2DEG) with equal-strength Rashba and Dresselhaus spin-orbit coupling sustains persistent helical spin-wave states, which have remarkably long lifetimes. In the presence of an in-plane magnetic field, there exist single-particle excitations that have the chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shahrzad Karimi, Carsten A. Ullrich, Irene D’Amico, Florent Perez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e9b7547702eb43b4b38a36159c1576a4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e9b7547702eb43b4b38a36159c1576a4
record_format dspace
spelling oai:doaj.org-article:e9b7547702eb43b4b38a36159c1576a42021-12-02T11:41:24ZSpin-helix Larmor mode10.1038/s41598-018-21818-82045-2322https://doaj.org/article/e9b7547702eb43b4b38a36159c1576a42018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21818-8https://doaj.org/toc/2045-2322Abstract A two-dimensional electron gas (2DEG) with equal-strength Rashba and Dresselhaus spin-orbit coupling sustains persistent helical spin-wave states, which have remarkably long lifetimes. In the presence of an in-plane magnetic field, there exist single-particle excitations that have the character of propagating helical spin waves. For magnon-like collective excitations, the spin-helix texture reemerges as a robust feature, giving rise to a decoupling of spin-orbit and electronic many-body effects. We prove that the resulting spin-flip wave dispersion is the same as in a magnetized 2DEG without spin-orbit coupling, apart from a shift by the spin-helix wave vector. The precessional mode about the persistent spin-helix state is shown to have an energy given by the bare Zeeman splitting, in analogy with Larmor’s theorem. We also discuss ways to observe the spin-helix Larmor mode experimentally.Shahrzad KarimiCarsten A. UllrichIrene D’AmicoFlorent PerezNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shahrzad Karimi
Carsten A. Ullrich
Irene D’Amico
Florent Perez
Spin-helix Larmor mode
description Abstract A two-dimensional electron gas (2DEG) with equal-strength Rashba and Dresselhaus spin-orbit coupling sustains persistent helical spin-wave states, which have remarkably long lifetimes. In the presence of an in-plane magnetic field, there exist single-particle excitations that have the character of propagating helical spin waves. For magnon-like collective excitations, the spin-helix texture reemerges as a robust feature, giving rise to a decoupling of spin-orbit and electronic many-body effects. We prove that the resulting spin-flip wave dispersion is the same as in a magnetized 2DEG without spin-orbit coupling, apart from a shift by the spin-helix wave vector. The precessional mode about the persistent spin-helix state is shown to have an energy given by the bare Zeeman splitting, in analogy with Larmor’s theorem. We also discuss ways to observe the spin-helix Larmor mode experimentally.
format article
author Shahrzad Karimi
Carsten A. Ullrich
Irene D’Amico
Florent Perez
author_facet Shahrzad Karimi
Carsten A. Ullrich
Irene D’Amico
Florent Perez
author_sort Shahrzad Karimi
title Spin-helix Larmor mode
title_short Spin-helix Larmor mode
title_full Spin-helix Larmor mode
title_fullStr Spin-helix Larmor mode
title_full_unstemmed Spin-helix Larmor mode
title_sort spin-helix larmor mode
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/e9b7547702eb43b4b38a36159c1576a4
work_keys_str_mv AT shahrzadkarimi spinhelixlarmormode
AT carstenaullrich spinhelixlarmormode
AT irenedamico spinhelixlarmormode
AT florentperez spinhelixlarmormode
_version_ 1718395434078044160