Machine learning provides novel neurophysiological features that predict performance to inhibit automated responses
Abstract Neurophysiological features like event-related potentials (ERPs) have long been used to identify different cognitive sub-processes that may contribute to task performance. It has however remained unclear whether “classical” ERPs are truly the best reflection or even causal to observable var...
Guardado en:
Autores principales: | Amirali Vahid, Moritz Mückschel, Andres Neuhaus, Ann-Kathrin Stock, Christian Beste |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9de6ebc91344907a2f8bc1bdf5ba4bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Stacking Ensemble Model to Predict Daily Number of Hospital Admissions for Cardiovascular Diseases
por: Zhixu Hu, et al.
Publicado: (2020) -
Effect of Cognitive Control on Age-Related Positivity Effects in Attentional Processing – Evidence From an Event-Related Brain Potential Study
por: Haining Liu, et al.
Publicado: (2021) - Neurophysiology
-
Local and network-level dysregulation of error processing is associated with binge drinking
por: Austin B. Alderson Myers, et al.
Publicado: (2021) -
Improved Accuracy in Predicting the Best Sensor Fusion Architecture for Multiple Domains
por: Erik Molino-Minero-Re, et al.
Publicado: (2021)