Context-aware Models for Twitter Sentiment Analysis
Recent works on Sentiment Analysis over Twitter are tied to the idea that the sentiment can be completely captured after reading an incoming tweet. However, tweets are filtered through streams of posts, so that a wider context, e.g. a topic, is always available. In this work, the contribution of thi...
Enregistré dans:
Auteurs principaux: | Giuseppe Castellucci, Danilo Croce, Andrea Vanzo, Roberto Basili |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Accademia University Press
2015
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e9e8dfa168984d86b470b3bd694aad65 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
LU4R: Adaptive Spoken Language Understanding for Robots
par: Andrea Vanzo, et autres
Publié: (2017) -
On the Readability of Kernel-based Deep Learning Models in Semantic Role Labeling Tasks over Multiple Languages
par: Daniele Rossini, et autres
Publié: (2019) -
Deep Learning for Automatic Image Captioning in Poor Training Conditions
par: Caterina Masotti, et autres
Publié: (2018) -
Large scale datasets for Image and Video Captioning in Italian
par: Scaiella Antonio, et autres
Publié: (2019) -
TWITTIRÒ: an Italian Twitter Corpus with a Multi-layered Annotation for Irony
par: Alessandra Teresa Cignarella, et autres
Publié: (2018)