Context-aware Models for Twitter Sentiment Analysis
Recent works on Sentiment Analysis over Twitter are tied to the idea that the sentiment can be completely captured after reading an incoming tweet. However, tweets are filtered through streams of posts, so that a wider context, e.g. a topic, is always available. In this work, the contribution of thi...
Guardado en:
Autores principales: | Giuseppe Castellucci, Danilo Croce, Andrea Vanzo, Roberto Basili |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9e8dfa168984d86b470b3bd694aad65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
LU4R: Adaptive Spoken Language Understanding for Robots
por: Andrea Vanzo, et al.
Publicado: (2017) -
On the Readability of Kernel-based Deep Learning Models in Semantic Role Labeling Tasks over Multiple Languages
por: Daniele Rossini, et al.
Publicado: (2019) -
Deep Learning for Automatic Image Captioning in Poor Training Conditions
por: Caterina Masotti, et al.
Publicado: (2018) -
Large scale datasets for Image and Video Captioning in Italian
por: Scaiella Antonio, et al.
Publicado: (2019) -
TWITTIRÒ: an Italian Twitter Corpus with a Multi-layered Annotation for Irony
por: Alessandra Teresa Cignarella, et al.
Publicado: (2018)