The Machine Learned Stethoscope Provides Accurate Operator Independent Diagnosis of Chest Disease
Magd Ahmed Kotb,1 Hesham Nabih Elmahdy,2 Hadeel Mohamed Seif El Dein,3 Fatma Zahraa Mostafa,1 Mohammed Ahmed Refaey,2 Khaled Waleed Younis Rjoob,2 Iman H Draz,1 Christine William Shaker Basanti1 1Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt; 2Information Technology D...
Enregistré dans:
Auteurs principaux: | Kotb MA, Elmahdy HN, Seif El Dein HM, Mostafa FZ, Refaey MA, Rjoob KWY, Draz IH, Basanti CWS |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Dove Medical Press
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e9eb4dd9be4e46eea0b1b78e1c22ff06 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients
par: Honorata Hafke-Dys, et autres
Publié: (2021) -
Digital stethoscope: technology update
par: Swarup S, et autres
Publié: (2018) -
An in vitro acoustic analysis and comparison of popular stethoscopes
par: Weiss D, et autres
Publié: (2019) -
A Novel Method of Temporomandibular Joint Hypermobility Diagnosis Based on Signal Analysis
par: Justyna Grochala, et autres
Publié: (2021) -
A Systematic Review on the Use of Artificial Intelligence Techniques in the Diagnosis of COVID-19 from Chest X-Ray Images
par: Mohammad Hosein Sadeghi, et autres
Publié: (2020)