The Machine Learned Stethoscope Provides Accurate Operator Independent Diagnosis of Chest Disease
Magd Ahmed Kotb,1 Hesham Nabih Elmahdy,2 Hadeel Mohamed Seif El Dein,3 Fatma Zahraa Mostafa,1 Mohammed Ahmed Refaey,2 Khaled Waleed Younis Rjoob,2 Iman H Draz,1 Christine William Shaker Basanti1 1Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt; 2Information Technology D...
Guardado en:
Autores principales: | Kotb MA, Elmahdy HN, Seif El Dein HM, Mostafa FZ, Refaey MA, Rjoob KWY, Draz IH, Basanti CWS |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9eb4dd9be4e46eea0b1b78e1c22ff06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial Intelligence Approach to the Monitoring of Respiratory Sounds in Asthmatic Patients
por: Honorata Hafke-Dys, et al.
Publicado: (2021) -
Digital stethoscope: technology update
por: Swarup S, et al.
Publicado: (2018) -
An in vitro acoustic analysis and comparison of popular stethoscopes
por: Weiss D, et al.
Publicado: (2019) -
A Novel Method of Temporomandibular Joint Hypermobility Diagnosis Based on Signal Analysis
por: Justyna Grochala, et al.
Publicado: (2021) -
A Systematic Review on the Use of Artificial Intelligence Techniques in the Diagnosis of COVID-19 from Chest X-Ray Images
por: Mohammad Hosein Sadeghi, et al.
Publicado: (2020)