Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?
Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic p...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e9fc995f62684ada87989a6a73fa43f8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e9fc995f62684ada87989a6a73fa43f8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e9fc995f62684ada87989a6a73fa43f82021-11-08T17:55:02ZCombining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation?2296-889X10.3389/fmolb.2021.760669https://doaj.org/article/e9fc995f62684ada87989a6a73fa43f82021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmolb.2021.760669/fullhttps://doaj.org/toc/2296-889XAlcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic pathways. This study aimed to: i) compare the plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-dependent inpatients based on metabolomics and interpretable machine learning. Plasma samples were obtained from healthy (n = 42) and AD-diagnosed individuals (n = 43). The plasma metabolic differences between them were investigated using liquid chromatography-tandem mass spectrometry (AB SCIEX® QTRAP 4500 system) in different electrospray ionization modes with scheduled multiple reaction monitoring scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive and negative ionization modes, respectively. In addition, 39 metabolites were identified as important variables to contribute to the classifications using an orthogonal partial least squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway analysis revealed significant changes or imbalances in alanine, aspartate, glutamate metabolism, which was possibly the main altered pathway related to AD. Tryptophan metabolism interactively influenced other metabolic pathways, such as nicotinate and nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites, normetanephrine and ascorbic acid were demonstrated as suitable biological correlates of AD inpatients from our model using an interpretable, supervised decision tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles between healthy and AD-diagnosed individuals may benefit researchers in illustrating the underlying molecular mechanisms of AD. This study also highlights the approach of combining metabolomics and interpretable machine learning as a valuable tool to uncover potential biological correlates. Future studies should focus on the global analysis of the possible roles of these differential metabolites and disordered metabolic pathways in the pathophysiology of AD.Xiuqing ZhuXiuqing ZhuJiaxin HuangShanqing HuangYuguan WenYuguan WenXiaochang LanXiaochang LanXipei WangChuanli LuZhanzhang WangZhanzhang WangNi FanNi FanDewei ShangDewei ShangFrontiers Media S.A.articlealcohol dependencemetabolic profilingbiological correlatemetabolomicsmachine learningtryptophan metabolismBiology (General)QH301-705.5ENFrontiers in Molecular Biosciences, Vol 8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
alcohol dependence metabolic profiling biological correlate metabolomics machine learning tryptophan metabolism Biology (General) QH301-705.5 |
spellingShingle |
alcohol dependence metabolic profiling biological correlate metabolomics machine learning tryptophan metabolism Biology (General) QH301-705.5 Xiuqing Zhu Xiuqing Zhu Jiaxin Huang Shanqing Huang Yuguan Wen Yuguan Wen Xiaochang Lan Xiaochang Lan Xipei Wang Chuanli Lu Zhanzhang Wang Zhanzhang Wang Ni Fan Ni Fan Dewei Shang Dewei Shang Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
description |
Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic pathways. This study aimed to: i) compare the plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-dependent inpatients based on metabolomics and interpretable machine learning. Plasma samples were obtained from healthy (n = 42) and AD-diagnosed individuals (n = 43). The plasma metabolic differences between them were investigated using liquid chromatography-tandem mass spectrometry (AB SCIEX® QTRAP 4500 system) in different electrospray ionization modes with scheduled multiple reaction monitoring scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive and negative ionization modes, respectively. In addition, 39 metabolites were identified as important variables to contribute to the classifications using an orthogonal partial least squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway analysis revealed significant changes or imbalances in alanine, aspartate, glutamate metabolism, which was possibly the main altered pathway related to AD. Tryptophan metabolism interactively influenced other metabolic pathways, such as nicotinate and nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites, normetanephrine and ascorbic acid were demonstrated as suitable biological correlates of AD inpatients from our model using an interpretable, supervised decision tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles between healthy and AD-diagnosed individuals may benefit researchers in illustrating the underlying molecular mechanisms of AD. This study also highlights the approach of combining metabolomics and interpretable machine learning as a valuable tool to uncover potential biological correlates. Future studies should focus on the global analysis of the possible roles of these differential metabolites and disordered metabolic pathways in the pathophysiology of AD. |
format |
article |
author |
Xiuqing Zhu Xiuqing Zhu Jiaxin Huang Shanqing Huang Yuguan Wen Yuguan Wen Xiaochang Lan Xiaochang Lan Xipei Wang Chuanli Lu Zhanzhang Wang Zhanzhang Wang Ni Fan Ni Fan Dewei Shang Dewei Shang |
author_facet |
Xiuqing Zhu Xiuqing Zhu Jiaxin Huang Shanqing Huang Yuguan Wen Yuguan Wen Xiaochang Lan Xiaochang Lan Xipei Wang Chuanli Lu Zhanzhang Wang Zhanzhang Wang Ni Fan Ni Fan Dewei Shang Dewei Shang |
author_sort |
Xiuqing Zhu |
title |
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
title_short |
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
title_full |
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
title_fullStr |
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
title_full_unstemmed |
Combining Metabolomics and Interpretable Machine Learning to Reveal Plasma Metabolic Profiling and Biological Correlates of Alcohol-Dependent Inpatients: What About Tryptophan Metabolism Regulation? |
title_sort |
combining metabolomics and interpretable machine learning to reveal plasma metabolic profiling and biological correlates of alcohol-dependent inpatients: what about tryptophan metabolism regulation? |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/e9fc995f62684ada87989a6a73fa43f8 |
work_keys_str_mv |
AT xiuqingzhu combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT xiuqingzhu combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT jiaxinhuang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT shanqinghuang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT yuguanwen combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT yuguanwen combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT xiaochanglan combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT xiaochanglan combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT xipeiwang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT chuanlilu combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT zhanzhangwang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT zhanzhangwang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT nifan combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT nifan combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT deweishang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation AT deweishang combiningmetabolomicsandinterpretablemachinelearningtorevealplasmametabolicprofilingandbiologicalcorrelatesofalcoholdependentinpatientswhatabouttryptophanmetabolismregulation |
_version_ |
1718441529195888640 |