Deep learning for early detection of pathological changes in X-ray bone microstructures: case of osteoarthritis
Abstract Texture features are designed to quantitatively evaluate patterns of spatial distribution of image pixels for purposes of image analysis and interpretation. Unexplained variations in the texture patterns often lead to misinterpretation and undesirable consequences in medical image analysis....
Guardado en:
Autores principales: | Livija Jakaite, Vitaly Schetinin, Jiří Hladůvka, Sergey Minaev, Aziz Ambia, Wojtek Krzanowski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea0ab033e796475aa16be1641f1a5396 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Possibilities of Magnetic Resonance Imaging in the Diagnosis of Microstructural Changes of the Subchondral Bone in Osteoarthritis
por: M. A. Kabalyk
Publicado: (2019) -
Review on Deep Learning Methods for Chest X-Ray based Abnormality Detection and Thoracic Pathology Classification
por: Joana Rocha, et al.
Publicado: (2021) -
X-ray phase nanotomography resolves the 3D human bone ultrastructure.
por: Max Langer, et al.
Publicado: (2012) -
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling
por: Xuekun Lu, et al.
Publicado: (2020) -
Low bone turnover is associated with plain X-ray vascular calcification in predialysis patients.
por: Ricardo Neto, et al.
Publicado: (2021)