On the State Approach Representations of Convolutional Codes over Rings of Modular Integers
In this study, we prove the existence of minimal first-order representations for convolutional codes with the predictable degree property over principal ideal artinian rings. Further, we prove that any such first-order representation leads to an input/state/output representation of the code provided...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea0d4cea1fa040aa87e33d1a22896aed |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | In this study, we prove the existence of minimal first-order representations for convolutional codes with the predictable degree property over principal ideal artinian rings. Further, we prove that any such first-order representation leads to an input/state/output representation of the code provided the base ring is local. When the base ring is a finite field, we recover the classical construction, studied in depth by J. Rosenthal and E. V. York. This allows us to construct observable convolutional codes over such rings in the same way as is carried out in classical convolutional coding theory. Furthermore, we prove the minimality of the obtained representations. This completes the study of the existence of input/state/output representations of convolutional codes over rings of modular integers. |
---|