Learning dynamical information from static protein and sequencing data
Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2019
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements. |
|---|