Learning dynamical information from static protein and sequencing data
Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.
Enregistré dans:
| Auteurs principaux: | , , , , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2019
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
| Résumé: | Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements. |
|---|