Learning dynamical information from static protein and sequencing data
Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ea15b726de5c44c49d48fefe125fa6ad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ea15b726de5c44c49d48fefe125fa6ad2021-12-02T17:02:16ZLearning dynamical information from static protein and sequencing data10.1038/s41467-019-13307-x2041-1723https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13307-xhttps://doaj.org/toc/2041-1723Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.Philip PearceFrancis G. WoodhouseAden ForrowAshley KellyHalim KusumaatmajaJörn DunkelNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Philip Pearce Francis G. Woodhouse Aden Forrow Ashley Kelly Halim Kusumaatmaja Jörn Dunkel Learning dynamical information from static protein and sequencing data |
description |
Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements. |
format |
article |
author |
Philip Pearce Francis G. Woodhouse Aden Forrow Ashley Kelly Halim Kusumaatmaja Jörn Dunkel |
author_facet |
Philip Pearce Francis G. Woodhouse Aden Forrow Ashley Kelly Halim Kusumaatmaja Jörn Dunkel |
author_sort |
Philip Pearce |
title |
Learning dynamical information from static protein and sequencing data |
title_short |
Learning dynamical information from static protein and sequencing data |
title_full |
Learning dynamical information from static protein and sequencing data |
title_fullStr |
Learning dynamical information from static protein and sequencing data |
title_full_unstemmed |
Learning dynamical information from static protein and sequencing data |
title_sort |
learning dynamical information from static protein and sequencing data |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad |
work_keys_str_mv |
AT philippearce learningdynamicalinformationfromstaticproteinandsequencingdata AT francisgwoodhouse learningdynamicalinformationfromstaticproteinandsequencingdata AT adenforrow learningdynamicalinformationfromstaticproteinandsequencingdata AT ashleykelly learningdynamicalinformationfromstaticproteinandsequencingdata AT halimkusumaatmaja learningdynamicalinformationfromstaticproteinandsequencingdata AT jorndunkel learningdynamicalinformationfromstaticproteinandsequencingdata |
_version_ |
1718381941473935360 |