Learning dynamical information from static protein and sequencing data

Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.

Guardado en:
Detalles Bibliográficos
Autores principales: Philip Pearce, Francis G. Woodhouse, Aden Forrow, Ashley Kelly, Halim Kusumaatmaja, Jörn Dunkel
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ea15b726de5c44c49d48fefe125fa6ad
record_format dspace
spelling oai:doaj.org-article:ea15b726de5c44c49d48fefe125fa6ad2021-12-02T17:02:16ZLearning dynamical information from static protein and sequencing data10.1038/s41467-019-13307-x2041-1723https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad2019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13307-xhttps://doaj.org/toc/2041-1723Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.Philip PearceFrancis G. WoodhouseAden ForrowAshley KellyHalim KusumaatmajaJörn DunkelNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Philip Pearce
Francis G. Woodhouse
Aden Forrow
Ashley Kelly
Halim Kusumaatmaja
Jörn Dunkel
Learning dynamical information from static protein and sequencing data
description Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.
format article
author Philip Pearce
Francis G. Woodhouse
Aden Forrow
Ashley Kelly
Halim Kusumaatmaja
Jörn Dunkel
author_facet Philip Pearce
Francis G. Woodhouse
Aden Forrow
Ashley Kelly
Halim Kusumaatmaja
Jörn Dunkel
author_sort Philip Pearce
title Learning dynamical information from static protein and sequencing data
title_short Learning dynamical information from static protein and sequencing data
title_full Learning dynamical information from static protein and sequencing data
title_fullStr Learning dynamical information from static protein and sequencing data
title_full_unstemmed Learning dynamical information from static protein and sequencing data
title_sort learning dynamical information from static protein and sequencing data
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad
work_keys_str_mv AT philippearce learningdynamicalinformationfromstaticproteinandsequencingdata
AT francisgwoodhouse learningdynamicalinformationfromstaticproteinandsequencingdata
AT adenforrow learningdynamicalinformationfromstaticproteinandsequencingdata
AT ashleykelly learningdynamicalinformationfromstaticproteinandsequencingdata
AT halimkusumaatmaja learningdynamicalinformationfromstaticproteinandsequencingdata
AT jorndunkel learningdynamicalinformationfromstaticproteinandsequencingdata
_version_ 1718381941473935360