Learning dynamical information from static protein and sequencing data
Reconstructing system dynamics on complex high-dimensional energy landscapes from static experimental snapshots remains challenging. Here, the authors introduce a framework to infer the essential dynamics of physical and biological systems without need for time-dependent measurements.
Guardado en:
Autores principales: | Philip Pearce, Francis G. Woodhouse, Aden Forrow, Ashley Kelly, Halim Kusumaatmaja, Jörn Dunkel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea15b726de5c44c49d48fefe125fa6ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Active matter logic for autonomous microfluidics
por: Francis G. Woodhouse, et al.
Publicado: (2017) -
LineageOT is a unified framework for lineage tracing and trajectory inference
por: Aden Forrow, et al.
Publicado: (2021) -
Bayesian analysis of static light scattering data for globular proteins.
por: Fan Yin, et al.
Publicado: (2021) -
Nonreciprocal elasticity and the realization of static and dynamic nonreciprocity
por: Mohamed Shaat
Publicado: (2020) -
Normative data and standard operating procedures for static and dynamic retinal vessel analysis as biomarker for cardiovascular risk
por: Lukas Streese, et al.
Publicado: (2021)