Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach
Abstract We aimed to delineate the neuropsychological and psychopathological profiles of children with congenital heart disease (CHD) and look for associations with clinical parameters. We conducted a prospective observational study in children with CHD who underwent cardiac surgery within five year...
Guardado en:
Autores principales: | Elisa Cainelli, Patrizia S. Bisiacchi, Paola Cogo, Massimo Padalino, Manuela Simonato, Michela Vergine, Corrado Lanera, Luca Vedovelli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea23eb02811e472ea079296f112a9258 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Long-Term Outcomes after Neonatal Hypoxic-Ischemic Encephalopathy in the Era of Therapeutic Hypothermia: A Longitudinal, Prospective, Multicenter Case-Control Study in Children without Overt Brain Damage
por: Elisa Cainelli, et al.
Publicado: (2021) -
Explainable machine-learning predictions for complications after pediatric congenital heart surgery
por: Xian Zeng, et al.
Publicado: (2021) -
Congenital heart disease
Publicado: (2006) -
Multiple Congenital Heart Abnormalities
por: Lazarov S., et al.
Publicado: (2019) -
A single center experience with publicly funded clinical exome sequencing for neurodevelopmental disorders or multiple congenital anomalies
por: Ben Pode-Shakked, et al.
Publicado: (2021)