Efficient Detection of Link-Flooding Attacks with Deep Learning
The DDoS attack is one of the most notorious attacks, and the severe impact of the DDoS attack on GitHub in 2018 raises the importance of designing effective defense methods for detecting this type of attack. Unlike the traditional network architecture that takes too long to cope with DDoS attacks,...
Guardado en:
Autores principales: | Chih-Hsiang Hsieh, Wei-Kuan Wang, Cheng-Xun Wang, Shi-Chun Tsai, Yi-Bing Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea2ce610c8014a9daddb9f4c262e50d1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City
por: Asmaa A. Elsaeidy, et al.
Publicado: (2021) -
AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification
por: Yuanyuan Wei, et al.
Publicado: (2021) -
Analysis of network security organization based on SD-WAN technology
por: Gulzinat Ordabayeva, et al.
Publicado: (2021) -
TaxoDaCML: Taxonomy based Divide and Conquer using machine learning approach for DDoS attack classification
por: Onkar Thorat, et al.
Publicado: (2021) -
Multi-Classifier of DDoS Attacks in Computer Networks Built on Neural Networks
por: Andrés Chartuni, et al.
Publicado: (2021)