Efficient Detection of Link-Flooding Attacks with Deep Learning
The DDoS attack is one of the most notorious attacks, and the severe impact of the DDoS attack on GitHub in 2018 raises the importance of designing effective defense methods for detecting this type of attack. Unlike the traditional network architecture that takes too long to cope with DDoS attacks,...
Enregistré dans:
Auteurs principaux: | Chih-Hsiang Hsieh, Wei-Kuan Wang, Cheng-Xun Wang, Shi-Chun Tsai, Yi-Bing Lin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea2ce610c8014a9daddb9f4c262e50d1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City
par: Asmaa A. Elsaeidy, et autres
Publié: (2021) -
AE-MLP: A Hybrid Deep Learning Approach for DDoS Detection and Classification
par: Yuanyuan Wei, et autres
Publié: (2021) -
Analysis of network security organization based on SD-WAN technology
par: Gulzinat Ordabayeva, et autres
Publié: (2021) -
TaxoDaCML: Taxonomy based Divide and Conquer using machine learning approach for DDoS attack classification
par: Onkar Thorat, et autres
Publié: (2021) -
Multi-Classifier of DDoS Attacks in Computer Networks Built on Neural Networks
par: Andrés Chartuni, et autres
Publié: (2021)