Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs.
Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechan...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea3cb90bb37b42a0976905c7c39e43b6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ea3cb90bb37b42a0976905c7c39e43b6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ea3cb90bb37b42a0976905c7c39e43b62021-11-18T08:31:49ZQuantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs.1932-620310.1371/journal.pone.0088754https://doaj.org/article/ea3cb90bb37b42a0976905c7c39e43b62014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24586383/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA-MB-231 cells. Furthermore, the synergy of NHAPI and tamoxifen was confirmed using MCF-7 cells by electrical impedance data, a mitochondrial inner membrane potential assay and cell cycle analyses. This is the first systematic investigation to quantitatively assess interactions between Fe chelators and standard chemotherapies using breast cancer cells. These studies are vital for their future clinical development.Eliska PotuckovaHana JansovaMiloslav MachacekAnna VavrovaPavlina HaskovaLucie TichotovaVera RichardsonDanuta S KalinowskiDes R RichardsonTomas SimunekPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e88754 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Eliska Potuckova Hana Jansova Miloslav Machacek Anna Vavrova Pavlina Haskova Lucie Tichotova Vera Richardson Danuta S Kalinowski Des R Richardson Tomas Simunek Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
description |
Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA-MB-231 cells. Furthermore, the synergy of NHAPI and tamoxifen was confirmed using MCF-7 cells by electrical impedance data, a mitochondrial inner membrane potential assay and cell cycle analyses. This is the first systematic investigation to quantitatively assess interactions between Fe chelators and standard chemotherapies using breast cancer cells. These studies are vital for their future clinical development. |
format |
article |
author |
Eliska Potuckova Hana Jansova Miloslav Machacek Anna Vavrova Pavlina Haskova Lucie Tichotova Vera Richardson Danuta S Kalinowski Des R Richardson Tomas Simunek |
author_facet |
Eliska Potuckova Hana Jansova Miloslav Machacek Anna Vavrova Pavlina Haskova Lucie Tichotova Vera Richardson Danuta S Kalinowski Des R Richardson Tomas Simunek |
author_sort |
Eliska Potuckova |
title |
Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
title_short |
Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
title_full |
Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
title_fullStr |
Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
title_full_unstemmed |
Quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
title_sort |
quantitative analysis of the anti-proliferative activity of combinations of selected iron-chelating agents and clinically used anti-neoplastic drugs. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/ea3cb90bb37b42a0976905c7c39e43b6 |
work_keys_str_mv |
AT eliskapotuckova quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT hanajansova quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT miloslavmachacek quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT annavavrova quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT pavlinahaskova quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT lucietichotova quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT verarichardson quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT danutaskalinowski quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT desrrichardson quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs AT tomassimunek quantitativeanalysisoftheantiproliferativeactivityofcombinationsofselectedironchelatingagentsandclinicallyusedantineoplasticdrugs |
_version_ |
1718421716496023552 |