Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning
With the rapid development of unmanned surfaces and underwater vehicles, fault diagnoses for underwater thrusters are important to prevent sudden damage, which can cause huge losses. The propeller causes the most common type of thruster damage. Thus, it is important to monitor the propeller’s health...
Guardado en:
Autores principales: | Chia-Ming Tsai, Chiao-Sheng Wang, Yu-Jen Chung, Yung-Da Sun, Jau-Woei Perng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea40d441dbfd439aa7df334d990a27b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance Simulation of a 5 kW hall Thruster
por: L. Yang, et al.
Publicado: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
por: Yuanyuan Yang, et al.
Publicado: (2021) -
Influences of Magnetic Flux Density on Discharge Characteristics of Low-Power Hall Thruster
por: Weilong Guo, et al.
Publicado: (2021) -
Single Fault Diagnosis Method of Sensors in Cascade System Based on Data-Driven
por: Wenbo Na, et al.
Publicado: (2021) -
Inductive Coupling Discharge Characteristics of a 10-cm Dual-Stage 4-Grid Radiofrequency Ion Thruster
por: Yanxu Pu, et al.
Publicado: (2021)