Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning
With the rapid development of unmanned surfaces and underwater vehicles, fault diagnoses for underwater thrusters are important to prevent sudden damage, which can cause huge losses. The propeller causes the most common type of thruster damage. Thus, it is important to monitor the propeller’s health...
Enregistré dans:
Auteurs principaux: | Chia-Ming Tsai, Chiao-Sheng Wang, Yu-Jen Chung, Yung-Da Sun, Jau-Woei Perng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea40d441dbfd439aa7df334d990a27b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Performance Simulation of a 5 kW hall Thruster
par: L. Yang, et autres
Publié: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
par: Yuanyuan Yang, et autres
Publié: (2021) -
Influences of Magnetic Flux Density on Discharge Characteristics of Low-Power Hall Thruster
par: Weilong Guo, et autres
Publié: (2021) -
Single Fault Diagnosis Method of Sensors in Cascade System Based on Data-Driven
par: Wenbo Na, et autres
Publié: (2021) -
Inductive Coupling Discharge Characteristics of a 10-cm Dual-Stage 4-Grid Radiofrequency Ion Thruster
par: Yanxu Pu, et autres
Publié: (2021)