9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression.

In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcript...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Soohyun Bang, Hyojeong Kwon, Hyun Sook Hwang, Ki Duk Park, Sung Uk Kim, Yong-Sun Bahn
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ea47cbcba0a44b33a05afb963b09cd3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcription profiles of C. neoformans, affecting the expression of more than 2,000 genes. Genes involved in translation and transcription were mostly upregulated, whereas those involved in the cytoskeleton, intracellular trafficking, and lipid metabolism were downregulated. KR-72 also exhibited a strong synergistic effect with the antifungal agent FK506. KR-72 treatment regulated the expression of several essential genes, including ECM16, NOP14, HSP10 and MGE1, which are required for C. neoformans growth. The KR-72-mediated induction of MGE1 also likely reduced the viability of C. neoformans by impairing cell cycle or the DNA repair system. In conclusion, KR-72 showed antifungal activity by modulating diverse biological processes through a mode of action distinct from those of clinically available antifungal drugs such as polyene and azole drugs.